Differentiation of pluripotent stem cells into hypothalamic and pituitary cells.

نویسنده

  • Hidetaka Suga
چکیده

The hypothalamic-pituitary system is essential to maintain life and control systemic homeostasis, but it is negatively affected by various diseases, leading to serious symptoms. Embryonic stem (ES) cells differentiate into neuroectodermal progenitors when cultured as floating aggregates under serum-free conditions. Recently, our colleagues have shown that strict removal of exogenous patterning factors during early differentiation steps induced efficient generation of rostral hypothalamic-like progenitors from mouse ES cell-derived neuroectodermal cells. The use of growth factor-free chemically defined medium was critical for this induction. The ES cell-derived hypothalamic-like progenitors generated rostral-dorsal hypothalamic neurons, especially magnocellular vasopressinergic neurons that release the hormone upon stimulation. Subsequently, we reported efficient self-formation of 3-dimensional adenohypophysis tissues in aggregate cultures of mouse ES cells. The ES cells were stimulated to differentiate into nonneural head ectoderm and hypothalamic neuroectoderm in adjacent layers within the aggregate and then treated with hedgehog. Self-organization of Rathke's pouch-like structures occurred at the interface of the two epithelia, as observed in vivo, and various endocrine cells including corticotrophs and somatotrophs were subsequently produced. The corticotrophs efficiently secreted adrenocorticotropic hormone in response to corticotropin-releasing hormone. Furthermore, when engrafted in vivo, these cells rescued the systemic glucocorticoid level in hypopituitary mice. Our present research aims are to prepare hypothalamic and pituitary tissues from human induced pluripotent stem cells and establish effective transplantation techniques with clinical applications. To replicate the complex and precise control of the hypothalamic-pituitary system, regenerative medicine using pluripotent cells may be a hopeful option.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spermatogonia stem cells: A new pluripotent source for repairment in regenerative medicine

Recently new reports have proved the pluripotency of spermatogonial stem cells (SSCs) derived from male gonad. This pluripotent stem cells resembled Embryonic stem cells recognized as Embryonic Stem like cells (ES like cells). ES like cells forms sharp edge colonies that are immunopositive to pluripotency markers and have differentiation capacity to Ectodermal, Mesodermal and Endodermal layers....

متن کامل

سلول‏های بنیادی پرتوان القایی از تولید تا کاربرد: مقاله مروری

Embryonic stem cells are pluripotent stem cells which have the ability to indefinitely self-renew and differentiate into all differentiated cells of the body. Regarding their two main properties (unlimited self-renewal and multi-lineage differentiation), these cells have various biomedical applications in basic research and cell based therapy. Because the transplantation of differentiated cells...

متن کامل

Differentiation of Mouse Stem Cells into Neural Cells on PLGA Microspheres Scaffold

       The cellular therapy and nerve tissue engineering will probably become a major therapeutic strategy for promoting axonal growth through injured area in central nervous system and peripheral nervous system in the coming years. The stem cell carrier scaffolds in nerve tissue engineering resulted in strong survival of cells and suitable differentiation into n...

متن کامل

Specification of Hemato-Endothelial-Like Structures and Generation of Hematopoietic Progenitor Cells from Human Pluripotent Stem Cells

 Background and purpose: Human pluripotent stem cells (hPSCs) with the ability to differentiate into adult cells have provided a new perspective for treatment of some diseases. But, the efficiency of differentiation methods to generate hematopoietic progenitor cells (HPCs) is faced with multiple challenges. In the present study, we investigated the formation of hemato-endothelial-like structure...

متن کامل

Differentiation Potential of Nestin (+) and Nestin (-) Cells Derived from Human Bone Marrow Mesenchymal Stem Cells into Functional Insulin Producing Cells

The feasibility of isolating and manipulating mesenchymal stem cells (MSCs) from human patients provides hope for curing numerous disease and disorders. Recent phenotypic analysis showed heterogeneity of MSCs. A nestin progenitor cell is a subpopulation within MSCs which plays a role in pancreas regeneration during embryogenesis. This study aimed to separate nestin (+) cells from human bone mar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroendocrinology

دوره 101 1  شماره 

صفحات  -

تاریخ انتشار 2015